کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655949 1343411 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalised dual arcs and Veronesean surfaces, with applications to cryptography
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Generalised dual arcs and Veronesean surfaces, with applications to cryptography
چکیده انگلیسی

We start by defining generalised dual arcs, the motivation for defining them comes from cryptography, since they can serve as a tool to construct authentication codes and secret sharing schemes. We extend the characterisation of the tangent planes of the Veronesean surface in PG(5,q), q odd, described in [J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford Math. Monogr., Clarendon Press/Oxford Univ. Press, New York, 1991], as a set of q2+q+1 planes in PG(5,q), such that every two intersect in a point and every three are skew. We show that a set of q2+q planes generating PG(5,q), q odd, and satisfying the above properties can be extended to a set of q2+q+1 planes still satisfying all conditions. This result is a natural generalisation of the fact that a q-arc in PG(2,q), q odd, can always be extended to a (q+1)-arc. This extension result is then used to study a regular generalised dual arc with parameters (9,5,2,0) in PG(9,q), q odd, where we obtain an algebraic characterisation of such an object as being the image of a cubic Veronesean.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 3, April 2009, Pages 684-698