کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655969 | 1343412 | 2008 | 18 صفحه PDF | دانلود رایگان |

Motivated by a connection between semi-regular relative difference sets and mutually unbiased bases, we study relative difference sets with parameters (m,n,m,m/n) in groups of non-prime-power orders. Let p be an odd prime. We prove that there does not exist a (2p,p,2p,2) relative difference set in any group of order 2p2, and an abelian (4p,p,4p,4) relative difference set can only exist in the group . On the other hand, we construct a family of non-abelian relative difference sets with parameters (4q,q,4q,4), where q is an odd prime power greater than 9 and . When q=p is a prime, p>9, and , the (4p,p,4p,4) non-abelian relative difference sets constructed here are genuinely non-abelian in the sense that there does not exist an abelian relative difference set with the same parameters.
Journal: Journal of Combinatorial Theory, Series A - Volume 115, Issue 8, November 2008, Pages 1456-1473