کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655984 1343413 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combinatorics on partial word correlations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Combinatorics on partial word correlations
چکیده انگلیسی

Partial words are strings over a finite alphabet that may contain a number of “do not know” symbols. In this paper, we consider the period and weak period sets of partial words of length n over a finite alphabet, and study the combinatorics of specific representations of them, called correlations, which are binary and ternary vectors of length n indicating the periods and weak periods. We characterize precisely which vectors represent the period and weak period sets of partial words and prove that all valid correlations may be taken over the binary alphabet. We show that the sets of all such vectors of a given length form distributive lattices under suitably defined partial orderings. We show that there is a well-defined minimal set of generators for any binary correlation of length n and demonstrate that these generating sets are the primitive subsets of {1,2,…,n−1}. We also investigate the number of partial word correlations of length n. Finally, we compute the population size, that is, the number of partial words sharing a given correlation, and obtain recurrences to compute it. Our results generalize those of Guibas, Odlyzko, Rivals and Rahmann.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 117, Issue 6, August 2010, Pages 607-624