کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655987 1343413 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Counting numerical sets with no small atoms
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Counting numerical sets with no small atoms
چکیده انگلیسی

A numerical set S with Frobenius number g is a set of integers with min(S)=0 and max(Z−S)=g, and its atom monoid is . Let γg be the ratio of the number of numerical sets S having A(S)={0}∪(g,∞) divided by the total number of numerical sets with Frobenius number g. We show that the sequence {γg} is decreasing and converges to a number γ∞≈.4844 (with accuracy to within .0050). We also examine the singularities of the generating function for {γg}. Parallel results are obtained for the ratio of the number of symmetric numerical sets S with A(S)={0}∪(g,∞) by the number of symmetric numerical sets with Frobenius number g. These results yield information regarding the asymptotic behavior of the number of finite additive 2-bases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 117, Issue 6, August 2010, Pages 650-667