کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655987 | 1343413 | 2010 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Counting numerical sets with no small atoms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A numerical set S with Frobenius number g is a set of integers with min(S)=0 and max(Z−S)=g, and its atom monoid is . Let γg be the ratio of the number of numerical sets S having A(S)={0}∪(g,∞) divided by the total number of numerical sets with Frobenius number g. We show that the sequence {γg} is decreasing and converges to a number γ∞≈.4844 (with accuracy to within .0050). We also examine the singularities of the generating function for {γg}. Parallel results are obtained for the ratio of the number of symmetric numerical sets S with A(S)={0}∪(g,∞) by the number of symmetric numerical sets with Frobenius number g. These results yield information regarding the asymptotic behavior of the number of finite additive 2-bases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 117, Issue 6, August 2010, Pages 650-667
Journal: Journal of Combinatorial Theory, Series A - Volume 117, Issue 6, August 2010, Pages 650-667