کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656007 | 1343414 | 2011 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The number of extremal components of a rigid measure
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Littlewood–Richardson rule can be expressed in terms of measures, and the fact that the Littlewood–Richardson coefficient is one amounts to a rigidity property of some measure. We show that the number of extremal components of such a rigid measure can be related to easily calculated geometric data. We recover, in particular, a characterization of those extremal measures whose (appropriately defined) duals are extremal as well. This result is instrumental in writing explicit solutions of Schubert intersection problems in the rigid case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 7, October 2011, Pages 1925-1938
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 7, October 2011, Pages 1925-1938