کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656035 | 1343415 | 2011 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Embedding a Latin square with transversal into a projective space
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A Latin square of side n defines in a natural way a finite geometry on 3n points, with three lines of size n and n2 lines of size 3. A Latin square of side n with a transversal similarly defines a finite geometry on 3n+1 points, with three lines of size n, n2−n lines of size 3, and n concurrent lines of size 4. A collection of k mutually orthogonal Latin squares defines a geometry on kn points, with k lines of size n and n2 lines of size k. Extending the work of Bruen and Colbourn [A.A. Bruen, C.J. Colbourn, Transversal designs in classical planes and spaces, J. Combin. Theory Ser. A 92 (2000) 88–94], we characterise embeddings of these finite geometries into projective spaces over skew fields.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 5, July 2011, Pages 1674-1683
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 5, July 2011, Pages 1674-1683