کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656117 1343420 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Erdős–Ko–Rado theorems for chordal graphs and trees
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Erdős–Ko–Rado theorems for chordal graphs and trees
چکیده انگلیسی

One of the more recent generalizations of the Erdős–Ko–Rado theorem, formulated by Holroyd, Spencer and Talbot, defines the Erdős–Ko–Rado property for graphs in the following manner: for a graph G, vertex v∈G and some integer r⩾1 denote the family of independent r-sets of V(G) by J(r)(G) and the subfamily {A∈J(r)(G):v∈A} by , called a star. Then G is said to be r-EKR if no intersecting subfamily of J(r)(G) is larger than the largest star in J(r)(G). In this paper, we prove that if G is a disjoint union of chordal graphs, including at least one singleton, then G is r-EKR if , where μ(G) is the minimum size of a maximal independent set.We also prove Erdős–Ko–Rado results for chains of complete graphs, which are special chordal graphs obtained by blowing up edges of a path into complete graphs, as well as prove preliminary results for trees.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 3, April 2011, Pages 829-841