کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656165 | 1343422 | 2009 | 18 صفحه PDF | دانلود رایگان |

Hypermaps were introduced as an algebraic tool for the representation of embeddings of graphs on an orientable surface. Recently a bijection was given between hypermaps and indecomposable permutations; this sheds new light on the subject by connecting a hypermap to a simpler object. In this paper, a bijection between indecomposable permutations and labeled Dyck paths is proposed, from which a few enumerative results concerning hypermaps and maps follow. We obtain for instance an inductive formula for the number of hypermaps with n darts, p vertices and q hyperedges; the latter is also the number of indecomposable permutations of Sn with p cycles and q left-to-right maxima. The distribution of these parameters among all permutations is also considered.
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 8, November 2009, Pages 1326-1343