کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656221 | 1343426 | 2009 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Punctured plane partitions and the q-deformed Knizhnik–Zamolodchikov and Hirota equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider partial sum rules for the homogeneous limit of the solution of the q-deformed Knizhnik–Zamolodchikov equation with reflecting boundaries in the Dyck path representation of the Temperley–Lieb algebra. We show that these partial sums arise in a solution of the discrete Hirota equation, and prove that they are the generating functions of τ2-weighted punctured cyclically symmetric transpose complement plane partitions where τ=−(q+q−1). In the cases of no or minimal punctures, we prove that these generating functions coincide with τ2-enumerations of vertically symmetric alternating sign matrices and modifications thereof.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 4, May 2009, Pages 772-794
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 4, May 2009, Pages 772-794