کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656234 | 1343426 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spherical two-distance sets
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A set S of unit vectors in n-dimensional Euclidean space is called spherical two-distance set, if there are two numbers a and b so that the inner products of distinct vectors of S are either a or b. It is known that the largest cardinality g(n) of spherical two-distance sets does not exceed n(n+3)/2. This upper bound is known to be tight for n=2,6,22. The set of mid-points of the edges of a regular simplex gives the lower bound L(n)=n(n+1)/2 for g(n).In this paper using the so-called polynomial method it is proved that for nonnegative a+b the largest cardinality of S is not greater than L(n). For the case a+b<0 we propose upper bounds on |S| which are based on Delsarte's method. Using this we show that g(n)=L(n) for 6
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 4, May 2009, Pages 988-995
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 4, May 2009, Pages 988-995