کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656251 1343427 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the maximum number of edges in quasi-planar graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On the maximum number of edges in quasi-planar graphs
چکیده انگلیسی

A topological graph is quasi-planar, if it does not contain three pairwise crossing edges. Agarwal et al. [P.K. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1) (1997) 1–9] proved that these graphs have a linear number of edges. We give a simple proof for this fact that yields the better upper bound of 8n edges for n vertices. Our best construction with 7n−O(1) edges comes very close to this bound. Moreover, we show matching upper and lower bounds for several relaxations and restrictions of this problem. In particular, we show that the maximum number of edges of a simple quasi-planar topological graph (i.e., every pair of edges have at most one point in common) is 6.5n−O(1), thereby exhibiting that non-simple quasi-planar graphs may have many more edges than simple ones.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 3, April 2007, Pages 563-571