کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656288 1343429 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear colorings of simplicial complexes and collapsing
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Linear colorings of simplicial complexes and collapsing
چکیده انگلیسی

A vertex coloring of a simplicial complex Δ is called a linear coloring if it satisfies the property that for every pair of facets (F1,F2) of Δ, there exists no pair of vertices (v1,v2) with the same color such that v1∈F1∖F2 and v2∈F2∖F1. The linear chromatic number lchr(Δ) of Δ is defined as the minimum integer k such that Δ has a linear coloring with k colors. We show that if Δ is a simplicial complex with lchr(Δ)=k, then it has a subcomplex Δ′ with k vertices such that Δ is simple homotopy equivalent to Δ′. As a corollary, we obtain that lchr(Δ)⩾Homdim(Δ)+2. We also show in the case of linearly colored simplicial complexes, the usual assignment of a simplicial complex to a multicomplex has an inverse. Finally, we show that the chromatic number of a simple graph is bounded from above by the linear chromatic number of its neighborhood complex.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 7, October 2007, Pages 1315-1331