کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656304 | 1343430 | 2009 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Enumerating bases of self-dual matroids
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We define involutively self-dual matroids and prove that an enumerator for their bases is the square of a related enumerator for their self-dual bases. This leads to a new proof of Tutte's theorem that the number of spanning trees of a central reflex is a perfect square, and it solves a problem posed by Kalai about higher dimensional spanning trees in simplicial complexes. We also give a weighted version of the latter result.We give an algebraic analogue relating to the critical group of a graph, a finite abelian group whose order is the number of spanning trees of the graph. We prove that the critical group of a central reflex is a direct sum of two copies of an abelian group, and conclude with an analogous result in Kalai's setting.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 2, February 2009, Pages 351-378
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 2, February 2009, Pages 351-378