کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656306 | 1343430 | 2009 | 17 صفحه PDF | دانلود رایگان |

We describe an explicit chain map from the standard resolution to the minimal resolution for the finite cyclic group Zk of order k. We then demonstrate how such a chain map induces a “Zk-combinatorial Stokes theorem,” which in turn implies “Dold's theorem” that there is no equivariant map from an n-connected to an n-dimensional free Zk-complex. Thus we build a combinatorial access road to problems in combinatorics and discrete geometry that have previously been treated with methods from equivariant topology. The special case k=2 for this is classical; it involves Tucker's (1949) combinatorial lemma which implies the Borsuk–Ulam theorem, its proof via chain complexes by Lefschetz (1949), the combinatorial Stokes formula of Fan (1967), and Meunier's work (2006).
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 2, February 2009, Pages 404-420