کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656318 | 1343431 | 2007 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Log-concavity and LC-positivity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A triangle {a(n,k)}0⩽k⩽n of nonnegative numbers is LC-positive if for each r, the sequence of polynomials is q-log-concave. It is double LC-positive if both triangles {a(n,k)} and {a(n,n−k)} are LC-positive. We show that if {a(n,k)} is LC-positive then the log-concavity of the sequence {xk} implies that of the sequence {zn} defined by , and if {a(n,k)} is double LC-positive then the log-concavity of sequences {xk} and {yk} implies that of the sequence {zn} defined by . Examples of double LC-positive triangles include the constant triangle and the Pascal triangle. We also give a generalization of a result of Liggett that is used to prove a conjecture of Pemantle on characteristics of negative dependence.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 2, February 2007, Pages 195-210
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 2, February 2007, Pages 195-210