کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656362 | 1343433 | 2007 | 12 صفحه PDF | دانلود رایگان |

We show that the Ehrhart h-vector of an integer Gorenstein polytope with a regular unimodular triangulation satisfies McMullen's g-theorem; in particular, it is unimodal. This result generalizes a recent theorem of Athanasiadis (conjectured by Stanley) for compressed polytopes. It is derived from a more general theorem on Gorenstein affine normal monoids M: one can factor K[M] (K a field) by a “long” regular sequence in such a way that the quotient is still a normal affine monoid algebra. This technique reduces all questions about the Ehrhart h-vector of P to the Ehrhart h-vector of a Gorenstein polytope Q with exactly one interior lattice point, provided each lattice point in a multiple cP, c∈N, can be written as the sum of c lattice points in P. (Up to a translation, the polytope Q belongs to the class of reflexive polytopes considered in connection with mirror symmetry.) If P has a regular unimodular triangulation, then it follows readily that the Ehrhart h-vector of P coincides with the combinatorial h-vector of the boundary complex of a simplicial polytope, and the g-theorem applies.
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 1, January 2007, Pages 65-76