کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656362 1343433 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
h-Vectors of Gorenstein polytopes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
h-Vectors of Gorenstein polytopes
چکیده انگلیسی

We show that the Ehrhart h-vector of an integer Gorenstein polytope with a regular unimodular triangulation satisfies McMullen's g-theorem; in particular, it is unimodal. This result generalizes a recent theorem of Athanasiadis (conjectured by Stanley) for compressed polytopes. It is derived from a more general theorem on Gorenstein affine normal monoids M: one can factor K[M] (K a field) by a “long” regular sequence in such a way that the quotient is still a normal affine monoid algebra. This technique reduces all questions about the Ehrhart h-vector of P to the Ehrhart h-vector of a Gorenstein polytope Q with exactly one interior lattice point, provided each lattice point in a multiple cP, c∈N, can be written as the sum of c lattice points in P. (Up to a translation, the polytope Q belongs to the class of reflexive polytopes considered in connection with mirror symmetry.) If P has a regular unimodular triangulation, then it follows readily that the Ehrhart h-vector of P coincides with the combinatorial h-vector of the boundary complex of a simplicial polytope, and the g-theorem applies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 1, January 2007, Pages 65-76