کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656364 1343433 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lattice point counts for the Shi arrangement and other affinographic hyperplane arrangements
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Lattice point counts for the Shi arrangement and other affinographic hyperplane arrangements
چکیده انگلیسی

Hyperplanes of the form xj=xi+c are called affinographic. For an affinographic hyperplane arrangement in Rn, such as the Shi arrangement, we study the function f(m) that counts integral points in n[1,m] that do not lie in any hyperplane of the arrangement. We show that f(m) is a piecewise polynomial function of positive integers m, composed of terms that appear gradually as m increases. Our approach is to convert the problem to one of counting integral proper colorations of a rooted integral gain graph.An application is to interval coloring in which the interval of available colors for vertex vi has the form [hi+1,m].A related problem takes colors modulo m; the number of proper modular colorations is a different piecewise polynomial that for large m becomes the characteristic polynomial of the arrangement (by which means Athanasiadis previously obtained that polynomial). We also study this function for all positive moduli.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 1, January 2007, Pages 97-109