کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656383 1343434 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Avoider–Enforcer games
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Avoider–Enforcer games
چکیده انگلیسی

Let p and q be positive integers and let H be any hypergraph. In a (p,q,H) Avoider–Enforcer game two players, called Avoider and Enforcer, take turns selecting previously unclaimed vertices of H. Avoider selects p vertices per move and Enforcer selects q vertices per move. Avoider loses if he claims all the vertices of some hyperedge of H; otherwise Enforcer loses. We prove a sufficient condition for Avoider to win the (p,q,H) game. We then use this condition to show that Enforcer can win the (1,q) perfect matching game on K2n for every q⩽cn/logn for an appropriate constant c, and the (1,q) Hamilton cycle game on Kn for every q⩽cnloglogloglogn/lognlogloglogn for an appropriate constant c. We also determine exactly those values of q for which Enforcer can win the (1,q) connectivity game on Kn. This result is quite surprising as it substantially differs from its Maker–Breaker analog. Our method extends easily to improve a result of Lu [X. Lu, A note on biased and non-biased games, Discrete Appl. Math. 60 (1995) 285–291], regarding forcing an opponent to pack many pairwise edge disjoint spanning trees in his graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 5, July 2007, Pages 840-853