کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656389 | 1343434 | 2007 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bijective counting of Kreweras walks and loopless triangulations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider lattice walks in the plane starting at the origin, remaining in the first quadrant i,j⩾0 and made of West, South and North-East steps. In 1965, Germain Kreweras discovered a remarkably simple formula giving the number of these walks (with prescribed length and endpoint). Kreweras' proof was very involved and several alternative derivations have been proposed since then. But the elegant simplicity of the counting formula remained unexplained. We give the first purely combinatorial explanation of this formula. Our approach is based on a bijection between Kreweras walks and triangulations with a distinguished spanning tree. We obtain simultaneously a bijective way of counting loopless triangulations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 5, July 2007, Pages 931-956
Journal: Journal of Combinatorial Theory, Series A - Volume 114, Issue 5, July 2007, Pages 931-956