کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656399 | 1343435 | 2008 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A bijective proof of Jackson's formula for the number of factorizations of a cycle
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Factorizations of the cyclic permutation into two permutations with respectively n and m cycles, or, equivalently, unicellular bicolored maps with N edges and n white and m black vertices, have been enumerated independantly by Jackson and Adrianov using evaluations of characters of the symmetric group. In this paper we present a bijection between unicellular partitioned bicolored maps and couples made of an ordered bicolored tree and a partial permutation, that allows for a combinatorial derivation of these results.Our work is closely related to a recent construction of Goulden and Nica for the celebrated Harer–Zagier formula, and indeed we provide a unified presentation of both bijections in terms of Eulerian tours in graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 115, Issue 6, August 2008, Pages 903-924
Journal: Journal of Combinatorial Theory, Series A - Volume 115, Issue 6, August 2008, Pages 903-924