کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656473 | 1343438 | 2006 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Brouwer, Godsil, Koolen and Martin [Width and dual width of subsets in polynomial association schemes, J. Combin. Theory Ser. A 102 (2003) 255–271] introduced the width w and the dual width w* of a subset in a distance-regular graph and in a cometric association scheme, respectively, and then derived lower bounds on these new parameters. For instance, subsets with the property w+w*=d in a cometric distance-regular graph with diameter d attain these bounds. In this paper, we classify subsets with this property in Grassmann graphs, bilinear forms graphs and dual polar graphs. We use this information to establish the Erdős–Ko–Rado theorem in full generality for the first two families of graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 113, Issue 5, July 2006, Pages 903-910
Journal: Journal of Combinatorial Theory, Series A - Volume 113, Issue 5, July 2006, Pages 903-910