کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656499 1343440 2008 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic enumeration of dense 0–1 matrices with specified line sums
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Asymptotic enumeration of dense 0–1 matrices with specified line sums
چکیده انگلیسی

Let s=(s1,s2,…,sm) and t=(t1,t2,…,tn) be vectors of non-negative integers with . Let B(s,t) be the number of m×n matrices over {0,1} with jth row sum equal to sj for 1⩽j⩽m and kth column sum equal to tk for 1⩽k⩽n. Equivalently, B(s,t) is the number of bipartite graphs with m vertices in one part with degrees given by s, and n vertices in the other part with degrees given by t. Most research on the asymptotics of B(s,t) has focused on the sparse case, where the best result is that of Greenhill, McKay and Wang (2006). In the case of dense matrices, the only precise result is for the case of equal row sums and equal column sums (Canfield and McKay, 2005). This paper extends the analytic methods used by the latter paper to the case where the row and column sums can vary within certain limits. Interestingly, the result can be expressed by the same formula which holds in the sparse case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 115, Issue 1, January 2008, Pages 32-66