کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656504 | 1343440 | 2008 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Proper partial geometries with Singer groups and pseudogeometric partial difference sets
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A partial geometry admitting a Singer group G is equivalent to a partial difference set in G admitting a certain decomposition into cosets of line stabilizers. We develop methods for the classification of these objects, in particular, for the case of abelian Singer groups. As an application, we show that a proper partial geometry Π=pg(s+1,t+1,2) with an abelian Singer group G can only exist if t=2(s+2) and G is an elementary abelian 3-group of order 3(s+1) or Π is the Van Lint–Schrijver partial geometry. As part of the proof, we show that the Diophantine equation (m3−1)/2=(2rw−1)/(r2−1) has no solutions in integers m,r⩾1, w⩾2, settling a case of Goormaghtigh's equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 115, Issue 1, January 2008, Pages 147-177
Journal: Journal of Combinatorial Theory, Series A - Volume 115, Issue 1, January 2008, Pages 147-177