کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656532 1343442 2006 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A variant of the hypergraph removal lemma
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
A variant of the hypergraph removal lemma
چکیده انگلیسی

Recent work of Gowers [T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001) 465–588] and Nagle, Rödl, Schacht, and Skokan [B. Nagle, V. Rödl, M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms, in press; V. Rödl, J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Algorithms, in press; V. Rödl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs, preprint] has established a hypergraph removal lemma, which in turn implies some results of Szemerédi [E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975) 299–345], and Furstenberg and Katznelson [H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Anal. Math. 34 (1978) 275–291] concerning one-dimensional and multidimensional arithmetic progressions, respectively. In this paper we shall give a self-contained proof of this hypergraph removal lemma. In fact we prove a slight strengthening of the result, which we will use in a subsequent paper [T. Tao, The Gaussian primes contain arbitrarily shaped constellations, preprint] to establish (among other things) infinitely many constellations of a prescribed shape in the Gaussian primes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 113, Issue 7, October 2006, Pages 1257-1280