کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656639 1343452 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intersection reverse sequences and geometric applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Intersection reverse sequences and geometric applications
چکیده انگلیسی

Pinchasi and Radoičić [On the number of edges in geometric graphs with no self-intersecting cycle of length 4, in: J. Pach (Ed.), Towards a Theory of Geometric Graphs, Contemporary Mathematics, vol. 342, American Mathematical Society, Providence, RI, 2004] used the following observation to bound the number of edges of a topological graph without a self-crossing cycle of length 4: if we make a list of the neighbors for every vertex in such a graph and order these lists cyclically according to the order of the emanating edges, then the common elements in any two lists have reversed cyclic order. Building on their work we give an improved estimate on the size of the lists having this property. As a consequence we get that a topological graph on n vertices not containing a self-crossing C4 has O(n3/2logn) edges. Our result also implies that n pseudo-circles in the plane can be cut into O(n3/2logn) pseudo-segments, which in turn implies bounds on point–curve incidences and on the complexity of a level of an arrangement of curves.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 113, Issue 4, May 2006, Pages 675-691