کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657773 1633065 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lattices of homomorphisms and pro-Lie groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Lattices of homomorphisms and pro-Lie groups
چکیده انگلیسی

Early this century K. H. Hofmann and S. A. Morris introduced the class of pro-Lie groups which consists of projective limits of finite-dimensional Lie groups and proved that it contains all compact groups, all locally compact abelian groups, and all connected locally compact groups and is closed under the formation of products and closed subgroups. They defined a topological group G to be almost connected if the quotient group of G by the connected component of its identity is compact.We show here that all almost connected pro-Lie groups as well as their continuous homomorphic images are RR-factorizable and ω-cellular  , i.e. every family of GδGδ-sets contains a countable subfamily whose union is dense in the union of the whole family. We also prove a general result which implies as a special case that if a topological group G contains a compact invariant subgroup K   such that the quotient group G/KG/K is an almost connected pro-Lie group, then G   is RR-factorizable and ω-cellular.Applying the aforementioned result we show that the sequential closure and the closure of an arbitrary Gδ,ΣGδ,Σ-set in an almost connected pro-Lie group H coincide.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 214, 1 December 2016, Pages 1–20
نویسندگان
, ,