کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657844 1633078 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Order and minimality of some topological groups
ترجمه فارسی عنوان
سفارش و حداقل تعداد گروه های توپولوژیک
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی

A Hausdorff topological group is called minimal if it does not admit a strictly coarser Hausdorff group topology. This paper mostly deals with the topological group H+(X)H+(X) of order-preserving homeomorphisms of a compact linearly ordered connected space X. We provide a sufficient condition on X   under which the topological group H+(X)H+(X) is minimal. This condition is satisfied, for example, by: the unit interval, the ordered square, the extended long line and the circle (endowed with its cyclic order). In fact, these groups are even a-minimal, meaning, in this setting, that the compact-open topology on G is the smallest Hausdorff group topology on G. One of the key ideas is to verify that for such X   the Zariski and the Markov topologies on the group H+(X)H+(X) coincide with the compact-open topology. The technique in this article is mainly based on a work of Gartside and Glyn [21].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 201, 15 March 2016, Pages 131–144
نویسندگان
, ,