کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657882 1633072 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topological properties of the group of the null sequences valued in an Abelian topological group
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Topological properties of the group of the null sequences valued in an Abelian topological group
چکیده انگلیسی

For a Hausdorff Abelian topological group X  , we denote by F0(X)F0(X) the group of all X-valued null sequences endowed with the uniform topology. We prove that if X is an (E  )-space (respectively, a strictly angelic space or a Š-space), then so is F0(X)F0(X). We essentially simplify and clarify the theory of properties respected by the Bohr functor on Abelian topological groups, denoted below by X↦X+X↦X+. We prove that for a complete maximally almost periodic group X, the group X   shares with X+X+ the same functionally bounded sets iff it shares the same compact sets and X+X+ is a μ-space. We show that for a locally compact Abelian (LCA) group X the following are equivalent: 1) X   is totally disconnected, 2) F0(X)F0(X) is a Schwartz group, 3) F0(X)F0(X) respects compactness, 4) F0(X)F0(X) has the Schur property. So, if a LCA group X   is not totally disconnected, the group F0(X)F0(X) is a reflexive non-Schwartz group which does not have the Schur property. We prove also that for every compact connected metrizable Abelian group X   the group F0(X)F0(X) is monothetic and every real-valued uniformly continuous function on F0(X)F0(X) is bounded.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 207, 1 July 2016, Pages 136–155
نویسندگان
,