کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657898 1633071 2016 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The horofunction compactification of Teichmüller spaces of surfaces with boundary
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
The horofunction compactification of Teichmüller spaces of surfaces with boundary
چکیده انگلیسی

The arc metric is an asymmetric metric on the Teichmüller space T(S)T(S) of a surface S   with nonempty boundary. It is the analogue of Thurston's metric on the Teichmüller space of a surface without boundary. In this paper we study the relation between Thurston's compactification and the horofunction compactification of T(S)T(S) endowed with the arc metric. We prove that there is a natural homeomorphism between the two compactifications. This generalizes a result of Walsh [20] that concerns Thurston's metric.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 208, 1 August 2016, Pages 160–191
نویسندگان
, , , ,