| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4657940 | 1633070 | 2016 | 8 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A Banach–Dieudonné theorem for the space of bounded continuous functions on a separable metric space with the strict topology
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													هندسه و توپولوژی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Let X be a separable metric space and let β be the strict topology on the space of bounded continuous functions on X, which has the space of τ-additive Borel measures as a continuous dual space. We prove a Banach–Dieudonné type result for the space of bounded continuous functions equipped with β: the finest locally convex topology on the dual space that coincides with the weak topology on all weakly compact sets is a k-space. As a consequence, the space of bounded continuous functions with the strict topology is hypercomplete and a Pták space. Additionally, the closed graph, inverse mapping and open mapping theorems holds for linear maps between space of this type.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 209, 15 August 2016, Pages 181–188
											Journal: Topology and its Applications - Volume 209, 15 August 2016, Pages 181–188
نویسندگان
												Richard C. Kraaij,