کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657975 1633076 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the selection problem for “metric”-proximal hyperspaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
On the selection problem for “metric”-proximal hyperspaces
چکیده انگلیسی

It is proved that a zero-dimensional metrizable space X   is locally compact modulo one point and separable if, and only if, its hyperspace F(X)F(X) of non-empty closed sets has a selection which is continuous with respect to all proximal hypertopologies on F(X)F(X) generated by the compatible metrics on X  . This completely solves a selection problem posed by Gutev and Nogura. The technique developed in the paper allows to show that the same holds also for the collection of all Hausdorff metric hypertopologies on F(X)F(X). Moreover, this strong selection problem is studied in the context of the usual selection problem for two natural “metric-independent” hypertopologies on F(X)F(X), and related to some topological properties of the hyperspace.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 203, 15 April 2016, Pages 159–169
نویسندگان
,