کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658138 1344251 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The topological aspect of the holonomy displacement on the principal U(n) bundles over Grassmannian manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
The topological aspect of the holonomy displacement on the principal U(n) bundles over Grassmannian manifolds
چکیده انگلیسی
Consider the principal U(n) bundles over Grassmann manifolds U(n)→U(n+m)/U(m)→πGn,m. Given X∈Um,n(C) and a 2-dimensional subspace m′⊂m ⊂u(m+n), assume either m′ is induced by X,Y∈Um,n(C) with X⁎Y=μIn for some μ∈R or by X,iX∈Um,n(C). Then m′ gives rise to a complete totally geodesic surface S in the base space. Furthermore, let γ be a piecewise smooth, simple closed curve on S parametrized by 0≤t≤1, and γ˜ be its horizontal lift on the bundle U(n)→π−1(S)→πS, which is immersed in U(n)→U(n+m)/U(m)→πGn,m. Thenγ˜(1)=γ˜(0)⋅(eiθIn)orγ˜(1)=γ˜(0), depending on whether the immersed bundle is flat or not, where A(γ) is the area of the region on the surface S surrounded by γ and θ=2⋅n+m2nA(γ).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 196, Part A, December 2015, Pages 8-21
نویسندگان
, ,