کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658139 1344251 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detecting topological and Banach fractals among zero-dimensional spaces
ترجمه فارسی عنوان
تشخیص فراکتال توپولوژیک و بانیف در فضاهای صفر بعدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی

A topological space X is called a topological fractal   if X=⋃f∈Ff(X)X=⋃f∈Ff(X) for a finite system FF of continuous self-maps of X, which is topologically contracting   in the sense that for every open cover UU of X   there is a number n∈Nn∈N such that for any functions f1,…,fn∈Ff1,…,fn∈F, the set f1∘…∘fn(X)f1∘…∘fn(X) is contained in some set U∈UU∈U. If, in addition, all functions f∈Ff∈F have Lipschitz constant <1 with respect to some metric generating the topology of X, then the space X is called a Banach fractal. It is known that each topological fractal is compact and metrizable. We prove that a zero-dimensional compact metrizable space X is a topological fractal if and only if X is a Banach fractal if and only if X is either uncountable or X   is countable and its scattered height ħ(X)ħ(X) is a successor ordinal. For countable compact spaces this classification was recently proved by M. Nowak.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 196, Part A, December 2015, Pages 22–30
نویسندگان
, , ,