کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658199 1633083 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An application of Mary Ellen Rudin's solution to Nikiel's Conjecture
ترجمه فارسی عنوان
استفاده از راه حل مری الن رودین به محکومیت نیکیل
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی

The concept of utter normality is a formal strengthening of the concept of monotone normality. It is an unsolved problem whether every monotonically normal space is utterly normal. Here we show that every suborderable monotonically normal space and every compact monotonically normal space is utterly normal. The latter result makes use of Mary Ellen Rudin's powerful theorem that every compact, monotonically normal space is the continuous image of a compact linearly ordered space. Corollaries include the fact that a compact, monotonically normal space is hereditarily weakly orthocompact. We show that a locally compact, monotonically normal space has a monotonically normal compactification if, and only if, it is weakly orthocompact. Mary Ellen Rudin's example [13] of a locally compact, monotonically normal space whose one point compactification is not monotonically normal shows that some such characterization is necessary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 195, November 2015, Pages 26–33
نویسندگان
, , ,