کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4658355 | 1633093 | 2015 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Seifert surfaces distinguished by sutured Floer homology but not its Euler characteristic
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
هندسه و توپولوژی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we find a family of knots with trivial Alexander polynomial, and construct two non-isotopic Seifert surfaces for each member in our family. In order to distinguish the surfaces we study the sutured Floer homology invariants of the sutured manifolds obtained by cutting the knot complements along the Seifert surfaces. Our examples provide the first use of sutured Floer homology, and not merely its Euler characteristic (a classical torsion), to distinguish Seifert surfaces. Our technique uses a version of Floer homology, called “longitude Floer homology” in a way that enables us to bypass the computations related to the SFH of the complement of a Seifert surface.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 184, 1 April 2015, Pages 72-86
Journal: Topology and its Applications - Volume 184, 1 April 2015, Pages 72-86
نویسندگان
Faramarz Vafaee,