کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658650 1633108 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topologizations of a set endowed with an action of a monoid
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Topologizations of a set endowed with an action of a monoid
چکیده انگلیسی
Given a set X and a family G of self-maps of X, we study the problem of the existence of a non-discrete Hausdorff topology on X with respect to which all functions f∈G are continuous. A topology on X with this property is called a G-topology. The answer is given in terms of the Zariski G-topology ζG on X, that is, the topology generated by the subbase consisting of the sets {x∈X:f(x)≠g(x)} and {x∈X:f(x)≠c}, where f,g∈G and c∈X. We prove that, for a countable monoid G⊂XX, X admits a non-discrete Hausdorff G-topology if and only if the Zariski G-topology ζG is non-discrete; moreover, in this case, X admits 2c hereditarily normal G-topologies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 169, 1 June 2014, Pages 161-174
نویسندگان
, , ,