| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4658650 | 1633108 | 2014 | 14 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Topologizations of a set endowed with an action of a monoid
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													هندسه و توپولوژی
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												Given a set X and a family G of self-maps of X, we study the problem of the existence of a non-discrete Hausdorff topology on X with respect to which all functions fâG are continuous. A topology on X with this property is called a G-topology. The answer is given in terms of the Zariski G-topology ζG on X, that is, the topology generated by the subbase consisting of the sets {xâX:f(x)â g(x)} and {xâX:f(x)â c}, where f,gâG and câX. We prove that, for a countable monoid GâXX, X admits a non-discrete Hausdorff G-topology if and only if the Zariski G-topology ζG is non-discrete; moreover, in this case, X admits 2c hereditarily normal G-topologies.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 169, 1 June 2014, Pages 161-174
											Journal: Topology and its Applications - Volume 169, 1 June 2014, Pages 161-174
نویسندگان
												Taras Banakh, Igor Protasov, Olga Sipacheva,