کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658867 1344291 2013 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrating curvature: From Umlaufsatz to J+ invariant
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Integrating curvature: From Umlaufsatz to J+ invariant
چکیده انگلیسی

Hopfʼs Umlaufsatz relates the total curvature of a closed immersed plane curve to its rotation number. While the curvature of a curve changes under local deformations, its integral over a closed curve is invariant under regular homotopies. A natural question is whether one can find some non-trivial densities on a curve, such that the corresponding integrals are (possibly after some corrections) also invariant under regular homotopies of the curve in the class of generic immersions. We construct a family of such densities using indices of points relative to the curve. This family depends on a formal parameter q and may be considered as a quantization of the total curvature. The linear term in the Taylor expansion at q=1 coincides, up to a normalization, with Arnoldʼs J+ invariant. This leads to an integral expression for J+.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 160, Issue 7, 15 April 2013, Pages 871-874