کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4658969 1344297 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nielsen numbers in topological coincidence theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Nielsen numbers in topological coincidence theory
چکیده انگلیسی

We discuss coincidences of pairs (f1,f2) of maps between manifolds. We recall briefly the definition of four types of Nielsen numbers which arise naturally from the geometry of generic coincidences. They are lower bounds for the minimum numbers MCC and MC which measure to some extend the ‘essential’ size of a coincidence phenomenon.In the setting of fixed point theory these Nielsen numbers all coincide with the classical notion but in general they are distinct invariants.We illustrate this by many examples involving maps from spheres to the real, complex or quaternionic projective space KP(n′). In particular, when n′ is odd and K=R or C, or when and K=H, we compute the minimum number MCC and all four Nielsen numbers for every pair of these maps, and we establish a ‘Wecken theorem’ in this context (in the process we correct also a mistake in previous work concerning the quaternionic case). However, when n′ is even, counterexamples can occur, detected e.g. by Kervaire invariants.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 159, Issue 18, 1 December 2012, Pages 3786-3796