کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4659201 | 1344311 | 2011 | 15 صفحه PDF | دانلود رایگان |

This paper deals with the algebra F(L) of real functions on a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L).As applications, idempotent functions are characterized and previous pointfree results about strict insertion of functions are significantly improved: general pointfree formulations that correspond exactly to the classical strict insertion results of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces are derived.The paper ends with a brief discussion concerning the frames in which every arbitrary real function on the α-dissolution of the frame is continuous.
Journal: Topology and its Applications - Volume 158, Issue 17, 1 November 2011, Pages 2264-2278