کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659249 1633118 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On functors preserving skeletal maps and skeletally generated compacta
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
On functors preserving skeletal maps and skeletally generated compacta
چکیده انگلیسی

A map f:X→Y between topological spaces is skeletal if the preimage f−1(A) of each nowhere dense subset A⊂Y is nowhere dense in X. We prove that a normal functor F:Comp→Comp is skeletal (which means that F preserves skeletal epimorphisms) if and only if for any open surjective map f:X→Y between metrizable zero-dimensional compacta with two-element non-degeneracy set Nf={x∈X:|f−1(f(x))|>1} the map Ff:FX→FY is skeletal. This characterization implies that each open normal functor is skeletal. The converse is not true even for normal functors of finite degree. The other main result of the paper says that each normal functor F:Comp→Comp preserves the class of skeletally generated compacta. This contrasts with the known Ščepinʼs result saying that a normal functor is open if and only if it preserves the class of openly generated compacta.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 159, Issues 10–11, 15 June–1 July 2012, Pages 2679-2693