کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659260 1633118 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The triple intersection property, three dimensional extremal length, and tiling of a topological cube
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
The triple intersection property, three dimensional extremal length, and tiling of a topological cube
چکیده انگلیسی

Let T be a triangulation of a closed topological cube Q, and let V be the set of vertices of T. Further assume that the triangulation satisfies a technical condition which we call the triple intersection property (see Definition 3.6). Then there is an essentially unique tiling C={Cv:v∈V} of a rectangular parallelepiped R by cubes, such that for every edge (u,v) of T the corresponding cubes Cv, Cu have nonempty intersection, and such that the vertices corresponding to the cubes at the corners of R are at the corners of Q. Moreover, the sizes of the cubes are obtained as a solution of a variational problem which is a discrete version of the notion of extremal length in R3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 159, Issues 10–11, 15 June–1 July 2012, Pages 2795-2805