کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659332 1344317 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The categories of flows of Set and Top
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
The categories of flows of Set and Top
چکیده انگلیسی

Following John Kennison, a flow (or discrete dynamical system) in a category C is a couple (X,f), where X is an object of C and f:X→X is a morphism, called the iterator. If (A,f) and (B,g) are flows in C, then h:A→B is a morphism of flows from (A,f) to (B,g) if h∘f=g∘h. We let Flow(C) denote the resulting category of flows in C.This paper deals with Flow(Set) and Flow(Top), where Set and Top denote respectively the categories of sets and topological spaces.By a Gottschalk flow, we mean a flow (X,f) in Top satisfying the following conditions:(i)If x∈X is any almost periodic point of f, then the closure is a minimal set of f;(ii)All points in any minimal set of f are almost periodic points.As proven by Gottschalk, if X is a compact Hausdorff space and f:X→X is a continuous function, then (X,f) is a Gottschalk flow.In this paper, we prove that for any flow (X,f) of Set, there is a topology P(f) on X for which ((X,P(f)),f) is a Gottschalk flow in Top. This, actually, defines a covariant functor P from Flow(Set) into Flow(Top).The main result of this paper provides a characterization of spaces in the image of the functor P in order-theoretical terms.Some categorical properties of Flow(Set) and Flow(Top) are also given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 159, Issue 9, 1 June 2012, Pages 2357-2366