کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659370 1344319 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Groups of quasi-invariance and the Pontryagin duality
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Groups of quasi-invariance and the Pontryagin duality
چکیده انگلیسی

A Polish group G is called a group of quasi-invariance or a QI-group, if there exist a locally compact group X and a probability measure μ on X such that (1) there exists a continuous monomorphism ϕ from G into X with dense image, and (2) for each g∈X either g∈ϕ(G) and the shift μg is equivalent to μ or g∉ϕ(G) and μg is orthogonal to μ. It is proved that ϕ(G) is a σ-compact subset of X. We show that there exists a Polish non-locally quasi-convex (and hence nonreflexive) QI-group such that its bidual is not a QI-group. It is proved also that the bidual group of a QI-group may be not a saturated subgroup of X. It is constructed a reflexive non-discrete group topology on the integers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 18, 1 December 2010, Pages 2786-2802