کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659412 1344322 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Brushing the hairs of transcendental entire functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Brushing the hairs of transcendental entire functions
چکیده انگلیسی

Let f be a transcendental entire function of finite order in the Eremenko–Lyubich class B (or a finite composition of such maps), and suppose that f is hyperbolic and has a unique Fatou component. We show that the Julia set of f is a Cantor bouquet; i.e. is ambiently homeomorphic to a straight brush in the sense of Aarts and Oversteegen. In particular, we show that any two such Julia sets are ambiently homeomorphic.We also show that if f∈B has finite order (or is a finite composition of such maps), but is not necessarily hyperbolic with connected Fatou set, then the Julia set of f contains a Cantor bouquet.As part of our proof, we describe, for an arbitrary function f∈B, a natural compactification of the dynamical plane by adding a “circle of addresses” at infinity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 159, Issue 8, 15 May 2012, Pages 2102-2114