کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659423 1344322 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Periodic point free continuous self-maps on graphs and surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Periodic point free continuous self-maps on graphs and surfaces
چکیده انگلیسی

We prove the following three results. We denote by Per(f) the set of all periods of a self-map f.Let G be a connected compact graph such that , and let f:G→G be a continuous map. If Per(f)=∅, then the eigenvalues of f⁎1 are 1 and 0, this last with multiplicity r−1, where f⁎1 is the induced action of f on the first homological space.Let Mg,b be an orientable connected compact surface of genus g⩾0 with b⩾0 boundary components, and let f:Mg,b→Mg,b be a continuous map. The degree of f is d if b=0. If Per(f)=∅, then the eigenvalues of f⁎1 are 1, d and 0, this last with multiplicity 2g−2 if b=0; and 1 and 0, this last with multiplicity 2g+b−2 if b>0.Let Ng,b be a non-orientable connected compact surface of genus g⩾1 with b⩾0 boundary components, and let f:Ng,b→Ng,b be a continuous map. If Per(f)=∅, then the eigenvalues of f⁎1 are 1 and 0, this last with multiplicity g+b−2.The tools used for proving these results can be applied for studying the periodic point free continuous self-maps of many other compact absolute neighborhood retract spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 159, Issue 8, 15 May 2012, Pages 2228-2231