کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659495 1344326 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the geometry of moduli spaces of anti-self-dual connections
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
On the geometry of moduli spaces of anti-self-dual connections
چکیده انگلیسی

Consider a simply connected, smooth, projective, complex surface X. Let be the moduli space of framed irreducible anti-self-dual connections on a principal SU(2)-bundle over X with second Chern class k>0, and let be the corresponding space of all framed connections, modulo gauge equivalence. A famous conjecture by M. Atiyah and J. Jones says that the inclusion map induces isomorphisms in homology and homotopy through a range that grows with k.In this paper, we focus on the fundamental group, π1. When this group is finite or polycyclic-by-finite, we prove that if the π1-part of the conjecture holds for a surface X, then it also holds for the surface obtained by blowing up X at n points. As a corollary, we get that the π1-part of the conjecture is true for any surface obtained by blowing up n times the complex projective plane at arbitrary points. Moreover, for such a surface, the fundamental group is either trivial or isomorphic to Z2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 159, Issue 3, 15 February 2012, Pages 633-645