کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659597 1344329 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Embeddings of self-similar ultrametric Cantor sets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Embeddings of self-similar ultrametric Cantor sets
چکیده انگلیسی

We study self-similar ultrametric Cantor sets arising from stationary Bratteli diagrams. We prove that such a Cantor set C is bi-Lipschitz embeddable in R[dimH(C)]+1, where [dimH(C)] denotes the integer part of its Hausdorff dimension. We compute this Hausdorff dimension explicitly and show that it is the abscissa of convergence of a zeta-function associated with a natural sequence of refining coverings of C (given by the Bratteli diagram). As a corollary we prove that the transversal of a (primitive) substitution tiling of Rd is bi-Lipschitz embeddable in Rd+1.We also show that C is bi-Hölder embeddable in the real line. The image of C in R turns out to be the ω-spectrum (the limit points of the set of eigenvalues) of a Laplacian on C introduced by Pearson–Bellissard via noncommutative geometry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 158, Issue 16, 1 October 2011, Pages 2148-2157