کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4659691 | 1344333 | 2011 | 8 صفحه PDF | دانلود رایگان |

The aim of this paper is to discuss the homotopy properties of locally well-behaved spaces. First, we state a nerve theorem. It gives sufficient conditions under which there is a weak n-equivalence between the nerve of a good cover and its underlying space. Then we conclude that for any (n−1)-connected, locally (n−1)-connected compact metric space X which is also n-semilocally simply connected, the nth homotopy group of X, πn(X), is finitely presented. This result allows us to provide a new proof for a generalization of Shelahʼs theorem (Shelah, 1988 [18], ) to higher homotopy groups (Ghane and Hamed, 2009 [8]). Also, we clarify the relationship between two homotopy properties of a topological space X, the property of being n-homotopically Hausdorff and the property of being n-semilocally simply connected. Further, we give a way to recognize a nullhomotopic 2-loop in 2-dimensional spaces. This result will involve the concept of generalized dendrite which introduce here. Finally, we prove that each 2-loop is homotopic to a reduced 2-loop.
Journal: Topology and its Applications - Volume 158, Issue 13, 15 August 2011, Pages 1607-1614