کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4659920 1344342 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On (strong) α-favorability of the Wijsman hyperspace
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
On (strong) α-favorability of the Wijsman hyperspace
چکیده انگلیسی

The Banach–Mazur game as well as the strong Choquet game are investigated on the Wijsman hyperspace from the nonempty player's (i.e. α's) perspective. For the strong Choquet game we show that if X is a locally separable metrizable space, then α has a (stationary) winning strategy on X iff it has a (stationary) winning strategy on the Wijsman hyperspace for each compatible metric on X. The analogous result for the Banach–Mazur game does not hold, not even if X is separable, as we show that α may have a (stationary) winning strategy on the Wijsman hyperspace for each compatible metric on X, and not have one on X. We also show that there exists a separable 1st category metric space such that α has a (stationary) winning strategy on its Wijsman hyperspace. This answers a question of Cao and Junnila (2010) [6].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 16, 1 October 2010, Pages 2555-2561