کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660033 1344346 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ganea and Whitehead definitions for the tangential Lusternik–Schnirelmann category of foliations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Ganea and Whitehead definitions for the tangential Lusternik–Schnirelmann category of foliations
چکیده انگلیسی

This work solves the problem of elaborating Ganea and Whitehead definitions for the tangential category of a foliated manifold. We develop these two notions in the category S-Top of stratified spaces, that are topological spaces X endowed with a partition F and compare them to a third invariant defined by using open sets. More precisely, these definitions apply to an element (X,F) of S-Top together with a class A of subsets of X; they are similar to invariants introduced by M. Clapp and D. Puppe.If (X,F)∈S-Top, we define a transverse subset as a subspace A of X such that the intersection S∩A is at most countable for any S∈F. Then we define the Whitehead and Ganea LS-categories of the stratified space by taking the infimum along the transverse subsets. When we have a closed manifold, endowed with a C1-foliation, the three previous definitions, with A the class of transverse subsets, coincide with the tangential category and are homotopical invariants.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 9, 15 June 2010, Pages 1680-1689